Homework 5 Geometry

Joshua Ruiter

April 8, 2018

Proposition 0.1 (Exercise 8-1). Let M be a smooth manifold with or without boundary, and let $A \subset M$ be a closed subset. Let X be a smooth vector field along A. Given any $U \subset M$ such that $A \subset U$, there exists a smooth global vector field \widetilde{X} on M such that $\widetilde{X}_A = X$ and supp $\widetilde{X} \subset U$.

Proof. Let $U \subset M$. For each $p \in A$, choose a neighborhood W_p of p and a smooth vector field \widetilde{X}_p that agrees with X on $W_p \cap A$, that is, $\widetilde{X}_p(x) = X(x)$ for $x \in W_p \cap A$. If we replace W_p with $W_p \cap U$, we can assume that $W_p \subset U$. Then the collection

$$\{W_p: p \in A\} \cup \{M \setminus A\}$$

is an open cover of M. Let $\{\psi_p : p \in A\} \cup \{\psi_0\}$ be a smooth partition of unity subordinate to this cover, with supp $\psi_p \subset W_p$ and supp $\psi_0 \subset M \setminus A$.

For $p \in A$, we know that $\psi_p \widetilde{X}_p$ is smooth on W_p . If we extend it to all of M by setting its value to be zero on $M \setminus \operatorname{supp} \psi_p$, then this extension is smooth, because $\psi_p \widetilde{X}_p$ is zero on $W_p \setminus \operatorname{supp} \psi_p$. Then we define

$$\widetilde{X}(x) = \sum_{p \in A} \psi_p(x) \widetilde{X}_p(x)$$

By construction, the collection $\{\text{supp }\psi_p\}$ is locally finite, so the above sum only has finitely many nonzero terms for any neighborhood in M. Thus it is a sum of finitely many smooth functions on such a neighborhood, and thus it is locally smooth near every $q \in M$. Thus it is smooth on all of M.

We check that that \widetilde{X} is an extension of X. Let $x \in A$. Then $\psi_0(x) = 0$. We also have $\widetilde{X}_p(x) = X(x)$ whenever $\psi_p(x) \neq 0$, so

$$\widetilde{X}(x) = \sum_{p \in A} \psi_p(x) X(x) = \left(\psi_0(x) + \sum_{p \in A} \psi_p(x) \right) X(x) = (0+1)X(x) = X(x)$$

(Note that $\sum_{p\in A} \psi_p((x) = 1)$ by the properties of a partition of unity.) Thus \widetilde{X} agrees with X on A, so it is an extension. All that remains to show is that supp $\widetilde{X} \subset U$. Because

the collection of supp ψ_p is locally finite, using Lemma 1.13(b) and the fact that $\overline{\operatorname{supp}\psi_p}=$ $\operatorname{supp} \psi_p$ because $\operatorname{supp} \psi_p$ is closed, we have

$$\operatorname{supp} \widetilde{X} = \overline{\bigcup_{p \in A} \operatorname{supp} \psi_p} = \bigcup_{p \in A} \overline{\operatorname{supp} \psi_p} = \bigcup_{p \in A} \operatorname{supp} \psi_p \subset U$$

Thus supp $\widetilde{X} \subset U$ as needed.

(Exercise 8-11a)

Let $X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$ be a vector field. Then in polar coordinates we have $x = r \cos \theta$ and $y \in r \sin \theta$, so

$$\frac{\partial}{\partial x} = \cos \theta \frac{\partial}{\partial r} - r \sin \theta \frac{\partial}{\partial \theta}$$
$$\frac{\partial}{\partial y} = \sin \theta \frac{\partial}{\partial r} + r \cos \theta \frac{\partial}{\partial \theta}$$

Then we can compute

$$X = r \cos \theta \left(\cos \theta \frac{\partial}{\partial r} - r \sin \theta \frac{\partial}{\partial \theta} \right) + r \sin \theta \left(\sin \theta \frac{\partial}{\partial r} + r \cos \theta \frac{\partial}{\partial \theta} \right)$$

$$= r \cos^2 \theta \frac{\partial}{\partial r} - r^2 \cos \theta \sin \theta \frac{\partial}{\partial \theta} + r \sin^2 \theta \frac{\partial}{\partial r} + r^2 \sin \theta \cos \theta \frac{\partial}{\partial \theta}$$

$$= r (\sin^2 \theta + \cos^2 \theta) \frac{\partial}{\partial r}$$

$$= r \frac{\partial}{\partial r}$$

(Exercise 8-16b)

Let $X = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}$, $Y = y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y}$. We compute the Lie bracket:

$$\begin{split} [X,Y] &= XY - YX \\ &= \left(x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}\right) \left(y\frac{\partial}{\partial z} - z\frac{\partial}{\partial y}\right) - \left(y\frac{\partial}{\partial z} - z\frac{\partial}{\partial y}\right) \left(x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}\right) \\ &= x\frac{\partial}{\partial y}y\frac{\partial}{\partial z} - x\frac{\partial}{\partial y}z\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}y\frac{\partial}{\partial z} + y\frac{\partial}{\partial x}z\frac{\partial}{\partial y} - y\frac{\partial}{\partial z}x\frac{\partial}{\partial y} + y\frac{\partial}{\partial z}yddx + z\frac{\partial}{\partial y}x\frac{\partial}{\partial y} - z\frac{\partial}{\partial y}y\frac{\partial}{\partial x} \\ &= x\frac{\partial}{\partial z} - z\frac{\partial}{\partial x} \end{split}$$